Isoliquiritigenin Attenuates Atherogenesis in Apolipoprotein E-Deficient Mice
نویسندگان
چکیده
Isoliquiritigenin (ISL) exhibits antioxidation and anti-inflammation activity. We sought to investigate the effects and mechanism of ISL on the development of atherosclerotic lesions in apolipoprotein E-deficient (apoE-/-) mice. Firstly, we determined that ISL reduced the mRNA levels of inflammatory factors interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), and monocyte chemotactic protein-1 (MCP-1), while it increased the expression of several lipoprotein-related genes in peritoneal macrophages treated with lipopolysaccharide (LPS). ISL also enhanced peroxisome proliferator-activated receptor gamma (PPARγ) protein levels and reversed the changes of ATP-binding cassette transporter A (ABCA1) and cluster of differentiation 36 (CD36) in macrophages treated with oxidative low-density lipoprotein (ox-LDL). Then, in an in vivo study, female apoE-/- mice were fed a Western diet with ISL (0, 20, 100 mg/kg/day) added for 12 weeks. We found that ISL decreased the plasma cholesterol levels of very low-density lipoprotein (VLDL)/LDL, promoted plasma superoxide dismutase (SOD) and paraoxonase-1 (PON1) activities, and decreased plasma IL-6, TNF-α, and MCP-1 levels. Moreover, ISL significantly reduced the atherosclerotic lesions and hepatic steatosis in apoE-/- mice. In the liver, ISL altered the expression of several key genes (such as SRBI, ABCA1, ABCG8, PPARγ, and FASN) involving cholesterol-selective uptake and excretion into bile, triglyceride (TG) biosynthesis, and inflammation. These results suggest that the atheroprotective effects of ISL are due to the improvement of lipid metabolism, antioxidation, and anti-inflammation, which involve PPARγ-dependent signaling.
منابع مشابه
Disruption of p21-activated kinase 1 gene diminishes atherosclerosis in apolipoprotein E-deficient mice
Pak1 plays an important role in various cellular processes, including cell motility, polarity, survival and proliferation. To date, its role in atherogenesis has not been explored. Here we report the effect of Pak1 on atherogenesis using atherosclerosis-prone apolipoprotein E-deficient (ApoE(-/-)) mice as a model. Disruption of Pak1 in ApoE(-/-) mice results in reduced plaque burden, significan...
متن کاملOral flavonoid supplementation attenuates atherosclerosis development in apolipoprotein E-deficient mice.
OBJECTIVE Caffeic acid phenethyl ester (CAPE), a natural flavonoid, specifically blocks activation of nuclear factor-kappaB (NF-kappaB). We examined the effects of oral CAPE supplementation on atherogenesis in apolipoprotein E-deficient (apoE-/-) mice. METHODS AND RESULTS Ten-week-old male apoE-/- mice were supplemented orally with CAPE (30 mg/kg body weight) for 12 weeks. At the end of admin...
متن کاملOral insulin supplementation attenuates atherosclerosis progression in apolipoprotein E-deficient mice.
OBJECTIVE The role of insulin in atherosclerosis progression in diabetes is uncertain. We examined the effects of oral insulin supplementation on atherogenesis in apolipoprotein E-deficient (E(0)) mice. METHODS AND RESULTS One-month-old male E(0) mice were orally supplemented with human insulin (0.1, 0.5, and 1 U/mL) or placebo for 3 months. At the end of the study, serum and macrophage oxida...
متن کاملResveratrol protects against diet-induced atherosclerosis by reducing low-density lipoprotein cholesterol and inhibiting inflammation in apolipoprotein E-deficient mice
Objective(s):Resveratrol (RES) is a polyphenol compound that has been shown a promising cardioprotective effect. However, some reports have yielded conflicting findings. Herein, we investigated the anti-atherosclerotic effects of RES in apolipoprotein E (apo E)-deficient mice on a high cholesterol diet. Materials and Methods: Firstly, atherosclerosis was induced by feeding a high cholesterol di...
متن کاملMicroRNA-155 deficiency results in decreased macrophage inflammation and attenuated atherogenesis in apolipoprotein E-deficient mice.
OBJECTIVE microRNA-155 (miR155) plays a critical role in immunity and macrophage inflammation. We aim to investigate the role of miR155 in atherogenesis. APPROACH AND RESULTS Quantitative real-time polymerase chain reaction showed that miR155 was expressed in mouse and human atherosclerotic lesions. miR155 expression in macrophages was correlated positively with proinflammatory cytokine expre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2016